Java数据结构:哈希 哈希函数 哈希表
什么是 Hash
Hash(哈希),又称“散列”。
散列(hash)英文原意是“混杂”、“拼凑”、“重新表述”的意思。
在某种程度上,散列是与排序相反的一种操作,排序是将集合中的元素按照某种方式比如字典顺序排列在一起,而散列通过计算哈希值,打破元素之间原有的关系,使集合中的元素按照散列函数的分类进行排列。
在介绍一些集合时,我们总强调需要重写某个类的 equlas() 方法和 hashCode() 方法,确保唯一性。这里的 hashCode() 表示的是对当前对象的唯一标示。计算 hashCode 的过程就称作 哈希。
为什么要有 Hash
我们通常使用数组或者链表来存储元素,一旦存储的内容数量特别多,需要占用很大的空间,而且在查找某个元素是否存在的过程中,数组和链表都需要挨个循环比较,而通过 哈希 计算,可以大大减少比较次数。
举个栗子:
现在有 4 个数 {2,5,9,13},需要查找 13 是否存在。
1.使用数组存储,需要新建个数组 new int[]{2,5,9,13},然后需要写个循环遍历查找:
int[] numbers = new int[]{2,5,9,13};
for (int i = 0; i < numbers.length; i++) {
if (numbers[i] == 13){
System.out.println(“find it!”);
return;
}
}
这样需要遍历 4 次才能找到,时间复杂度为 O(n)。
2.而假如存储时先使用哈希函数进行计算,这里我随便用个函数:
H[key] = key % 3;
四个数 {2,5,9,13} 对应的哈希值为:
H[2] = 2 % 3 = 2;
H[5] = 5 % 3 = 2;
H[9] = 9 % 3 = 0;
H[13] = 13 % 3 = 1;
然后把它们存储到对应的位置。
当要查找 13 时,只要先使用哈希函数计算它的位置,然后去那个位置查看是否存在就好了,本例中只需查找一次,时间复杂度为 O(1)。
因此可以发现,哈希 其实是随机存储的一种优化,先进行分类,然后查找时按照这个对象的分类去找。
哈希通过一次计算大幅度缩小查找范围,自然比从全部数据里查找速度要快。
比如你和我一样是个剁手族买书狂,家里书一大堆,如果书存放时不分类直接摆到书架上(数组存储),找某本书时可能需要脑袋从左往右从上往下转好几圈才能发现;如果存放时按照类别分开放,技术书、小说、文学等等分开(按照某种哈希函数计算),找书时只要从它对应的分类里找,自然省事多了。
哈希函数
哈希的过程中需要使用哈希函数进行计算。
哈希函数是一种映射关系,根据数据的关键词 key ,通过一定的函数关系,计算出该元素存储位置的函数。
表示为:
address = H [key]
几种常见的哈希函数(散列函数)构造方法
直接定址法
取关键字或关键字的某个线性函数值为散列地址。
即 H(key) = key 或 H(key) = a*key + b,其中a和b为常数。
比如
除留余数法
取关键字被某个不大于散列表长度 m 的数 p 求余,得到的作为散列地址。
即 H(key) = key % p, p < m。
比如
数字分析法
当关键字的位数大于地址的位数,对关键字的各位分布进行分析,选出分布均匀的任意几位作为散列地址。
仅适用于所有关键字都已知的情况下,根据实际应用确定要选取的部分,尽量避免发生冲突。
比如
平方取中法
先计算出关键字值的平方,然后取平方值中间几位作为散列地址。
随机分布的关键字,得到的散列地址也是随机分布的。
比如
折叠法(叠加法)
将关键字分为位数相同的几部分,然后取这几部分的叠加和(舍去进位)作为散列地址。
用于关键字位数较多,并且关键字中每一位上数字分布大致均匀。
比如
随机数法
选择一个随机函数,把关键字的随机函数值作为它的哈希值。
通常当关键字的长度不等时用这种方法。
构造哈希函数的方法很多,实际工作中要根据不同的情况选择合适的方法,总的原则是尽可能少的产生冲突。
通常考虑的因素有关键字的长度和分布情况、哈希值的范围等。
1. 本站所有资源来源于用户上传和网络,如有侵权请邮件联系站长!
2. 分享目的仅供大家学习和交流,您必须在下载后24小时内删除!
3. 不得使用于非法商业用途,不得违反国家法律。否则后果自负!
4. 本站提供的源码、模板、插件等等其他资源,都不包含技术服务请大家谅解!
5. 如有链接无法下载、失效或广告,请联系管理员处理!
6. 如遇到加密压缩包,请使用WINRAR解压,如遇到无法解压的请联系管理员!
7. 本站有不少源码未能详细测试(解密),不能分辨部分源码是病毒还是误报,所以没有进行任何修改,大家使用前请进行甄别!
66源码网 » Java数据结构:哈希 哈希函数 哈希表